YpfΦ: a filamentous phage acquired by Yersinia pestis

نویسندگان

  • Anne Derbise
  • Elisabeth Carniel
چکیده

Yersinia pestis, the plague bacillus, has an exceptional pathogenicity for humans. The plague bacillus emerged very recently (≈3,000 years ago) from the enteropathogen Y. pseudotuberculosis. Early after its emergence, Y. pestis became infected by a filamentous phage named YpfΦ. During the microevolution of the plague bacillus, the phage remained in the various lineages as an unstable extrachromosomal element. However, in the sub branch that caused the third plague pandemic, YpfΦ integrated itself into the bacterial chromosome to become a stable prophage. The genome of this phage has the same genetic organization as that of other filamentous phages such as the Vibrio cholerae CTXΦ phage, and shares high sequence identity with the CUS-1 filamentous phage of a high-virulence Escherichia coli K1 clone. In addition to genes involved in phage physiology, YpfΦ carries at each extremity of its genome two open reading frames with no predicted functions. This filamentous phage confers some selective properties to Y. pestis during the infectious process, which may explain why it was conserved duringY. pestis microevolution, despite its instability as an extrachromosomal element in most branches.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Delineation and analysis of chromosomal regions specifying Yersinia pestis.

Yersinia pestis, the causative agent of plague, has recently diverged from the less virulent enteropathogen Yersinia pseudotuberculosis. Its emergence has been characterized by massive genetic loss and inactivation and limited gene acquisition. The acquired genes include two plasmids, a filamentous phage, and a few chromosomal loci. The aim of this study was to characterize the chromosomal regi...

متن کامل

Diagnostic bioluminescent phage for detection of Yersinia pestis.

Yersinia pestis is the etiological agent of the plague. Because of the disease's inherent communicability, rapid clinical course, and high mortality, it is critical that an outbreak, whether it is natural or deliberate, be detected and diagnosed quickly. The objective of this research was to generate a recombinant luxAB ("light")-tagged reporter phage that can detect Y. pestis by rapidly and sp...

متن کامل

Development of Phage-Based Single Chain Fv Antibody Reagents for Detection of Yersinia pestis

BACKGROUND Most Yersinia pestis strains are known to express a capsule-like antigen, fraction 1 (F1)(.) F1 is encoded by the caf1 gene located on the large 100-kb pFra plasmid, which is found in Y. pestis but not in closely related species such as Yersinia enterocolytica and Yersinia pseudotuberculosis. In order to find antibodies specifically binding to Y. pestis we screened a large single cha...

متن کامل

Role of Tellurite Resistance Operon in Filamentous Growth of Yersinia pestis in Macrophages

BACKGROUND Yersinia pestis initiates infection by parasitism of host macrophages. In response to macrophage infections, intracellular Y. pestis can assume a filamentous cellular morphology which may mediate resistance to host cell innate immune responses. We previously observed the expression of Y. pestis tellurite resistance proteins TerD and TerE from the terZABCDE operon during macrophage in...

متن کامل

Counter Terrorism Measures to Combat Yersinia Pestis with Selenium Pharmaceuticals

The purpose of this study is to produce selenium labeled peptides and phage (bacterial viruses) that can selectively bind to the surface of the pathogenic bacteria Yersinia pestis (the plague) and inactivate it through the generation of superoxide radicals on its surface, similar to the way that it is inactivated by superoxide in macrophage. The results show that phage specific for a given bact...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2014